
YSM_slides

The Yourdon (Ward-Mellor)
Structured Method

Why study YSM?

It has been extended for embedded
systems by Ward & Mellor

It is a popular and well
understood method

It is applicable to both large and
small projects

It is well supported by CASE tools,
e.g. Select-Yourdon and EasyCase

Does it have drawbacks?
It is most applicable to the software
design stage - its interfaces with the
requirements and implementation
phases are rather loose

YSM_slides

Basic elements of the notation

Terminator Data
transformation

process

Data store Discrete data flow

The represents an item in the system’s
environment; it acts as a data source or sink.

terminator

Data transformation is an input/output
process (note that it can report the occurrence
of an event, i.e. initiate a control flow).

A is an abstraction on a file; it acts
as a repository for data that is subject to storage
delay. Values are modified at discrete points in
time and remembered. Readout is not ordered
and is non-destructive.

data store

The is an abstraction on a
transaction or other data-aggregate sent or
received by the system.

discrete data flow

YSM_slides

Extensions of the method for real-time

For real-time systems, it is necessary to
introduce additional elements to handle:

time continuous data
event data (logic signals)

Control
transformation

process

Continuous flow

Control flow (signal)

Control store

Prompt :
Activate/
Enable/
Disable/
Trigger

Group nodes

x

x
x x

y y

z z
x

x

x
x

YSM_slides

The controls the
behaviour of data transformations by activating
or de-activating them; it is an abstraction on
some portion of the system’s logic.

control transformation

The represents a buffer. It is
an abstraction on a stack (e.g. LIFO or FIFO).
Readout is not ordered but it is destructive.
The control store has a capacity.

control store

Prompts are initiated by control processes
and activate data transformations. There
are various types :

control
process

data
processprompt

Activator
Activator

Enable/
Disable

Trigger
Trigger

Data process

Data process

Data process

Enable

Disable

A more complex Environmental Model.

Context Diagram – Cooker Control Software

* This is known as an ‘access’ flow and
indicates that the system uses stored data
that is shared between it and its
environment. Any store shown on the
context diagram must be accessed by the
system and at least one terminator.

Cooker Control

YSM_slides

Method of use
The method consists of building a model
of the system in a hierarchical manner; this
is known as . The highest level is
known as the diagram. Typically,
it consists of a single data transformation,
some data/control flows and terminators.

levelling
context

The data transformation node conceals a
‘child’ data flow diagram (DFD).

YSM_slides

The control process

Control specifications are given in terms
of the familiar state transition diagram

Transitions between states occur as a result
of input events

Action routines produce output event
flows and prompts (Mealy FSM)

State A

State B State C

Each time activated

Event
Action

Event
Action

Event
Action

Event
Action

YSM_slides

Process Specifications
The procedure of decomposing the system
continues until a level is found when the
operations to be performed within a
transformation need not be subdivided further.

At this point, description of the individual
processes is done by means of a .PSPEC

Process specifications usually consist of
, tables, mathematical

formulae, graphs etc.
structured English

Structured English has 4 basic constructs :
Concurrency Sequence Decision Iteration

Do function B
Do function B
then....

Do function A Do function A
then

Do function C

IF condition
 DO function A
ELSE
 DO function B

WHILE
 condition
DO
 function A

@IN = list of input data items
@OUT = list of output data items

@PSPEC
FOR (all input data items)
 calculate (output data items)
 write (output data items)

@COMMENT

YSM_slides

The Data Dictionary
Flows leaving and arriving at the system are
usually non-primitives, representing groups
of data.

These groups decompose into smaller and
smaller groups as they proceed down
the hierarchical levels until they reduce
to primitive components.

The dictionary specifies the components
and structure of each group using a
special notation - the

.
Backus-Naur form

(BNF)

Example : The pilot's display of a flight
management system can be one of
several types, e.g. display initialising,
route display, progress display and may,
at any time, carry superimposed
alert/advisory messages.

VisualDisplay = [InitialDisplay | RouteDisplay|
 ProgressDisplay] +
 (Alert/AdvisoryMessage)

where : Alert/AdvisoryMessage =
 [WingFallenOff | EngineOnFire | YouAreLost]

YSM_slides

Data Dictionary Symbols (BNF)

Symbol Meaning Description
= composed of The flow named on the left is

composed of the flows named on the
right.

+ together with Collects members into a group but
does not imply ordering.

{ } iterations of The expression within the brackets
may occur any number of times in a
given instance of the flow. The
brackets may be indexed. M{ }N
indicates any number of iterations
from M to N, e.g.
 { }2 is 0, 1 or 2 iterations
2{ } is 2 or more iterations
2{ }2 is exactly 2 iterations

[|] select one of A given instance of the flow will
contain exactly one of the options
within the brackets.

() optional The expression within parantheses
may optionally appear in a given
instance of the flow.

“ “ literal The symbols enclosed within quotes
literally constitute the data flow.

\ \ comment Textual information.

YSM_slides

System Decomposition

user
keyboard

sensor

system
control

display

controller

mode

userkey

data-in data-out

out

mode

C1P1

P2

P3

parameters

parameters

data-in data-out

out

userkey

activate

activate activate

data-internal

N.B. This example is not a complete specification

YSM_slides

on entry
activate P1

S1

S2

mode

modeactivate P2
activate P3
deactivate P1

deactivate P2
deactivate P3
activate P1

Process specification for data transformation P1 :

1.2 - interpret keyboard buffer, PSPEC02.DAT

@IN = userkey
@OUT = parameters

@PSPEC interpret keyboard buffer

SEQ
 decode userkey to decoded userkey
 convert decoded userkey to 16 bit REAL type parameters

@

State transition
diagram for
control Process C1

YSM_slides

The Code Organisation Model

This uses the program structure
chart with the following notation:

Constantine

program module

sub-system : represents some
pre-defined function, perhaps
within the operating system or
language (sub-systems cannot
have children)

library function : pre-defined
function that may be used
across many modules

call conditional
call

iterated
call

data
couple

control
couple

A Constantine diagram shows the architecture
or calling structure of modules within a project.

