Jackson Structured Programming(JSP)
Jackson Structured Programming or JSP is a method for structured programming based on correspondences between data stream structure and program structure. The method is closely related in concept to creating a parser for a regular expression that describes the data stream structure, but tries to build a program structure that matches more than one data stream and provides guidance and techniques to compensate the limited lookahead and the clashes between the structures of the different data streams.

JSP was originally developed in the 1970s by IT consultant Michael A. Jackson and documented in his 1975 book Principles of Program Design. Jackson's aim was to improve the general standard of COBOL programming, but the method is still useful when coding with modern programming languages such as C and Perl. And while JSP was originally geared towards writing batch-style file processing programs, its principles are still useful when programming in the small, below the level where object-oriented methods become important.

Jackson Structured Programming was seen by many as related to Warnier Structured Programming, but the latter method focused almost exclusively on the structure of the output stream.

As a method of programming, JSP is more straightfoward than other structured methods, avoiding the leaps of intuition needed to successfully program using, say, top-down decomposition. And although it imposes a structure upon a program which improves its modifiability and maintainability, the structure is rather different from the type of structure advocated by Wirth, Dijkstra, et al."

JSP structures programs in terms of four component types:

· fundamental operations 

· sequences 

· iterations 

· selections 

In addition there are a number of constructs to support backtracking and to capture beneficient and intolerable side-effects.

Jackson Structured Programming (JSP)

Jackson Structured Programming was developed in the 1970’s by Michael Jackson (1976), and became a widely used design method, especially in Europe. At the World Health Organization, for example, JSP was used in the late 1970’s and 1980’s as a standard for specifying programs, while JSP was a government-wide specification standard in the UK.

Jackson Structure Diagrams (Tree Diagrams)

In JSP, design is defined as the relationship between parts to the whole. Programs have two types of components: composite components, which have a structure; and elementary components, which are elementary. Examples of elementary components are assembly language instructions or simple statements of a programming language. The composite components -- components having one or more parts -- are the three control structures of structured programming, sequence, selection and iteration. They are shown below, together with their textual representation in Jackson structure text, a pseudo code invented by Jackson, and ordinary pseudo code:

(a) sequence - a sequence is a composite component that has two or more parts occurring once each, in order (Figure 1).

[image: image1.emf]
Figure 1: Sequence structure diagram

(b) selection - a selection is a composite component that consists of two or more parts, only one of which is selected, once. (Figure 2)

[image: image2.emf]
Figure 2: Selection structure diagram

(c) iteration - an iteration is a composite component that consists of one part that repeats zero or more times. (Figure 3)

[image: image3.emf]
Figure 3: Iteration structure diagram

Basic JSP Design Method

JSP consists of the following steps:

1. Draw system diagram. (This step may be omitted when obvious.)

2. Draw data structures for program input(s) and output(s).

3. Form program structure based on the data structures from the previous step.

4. List and allocate operations to the program structure.

5. Create the elaborated program structure with operations and conditions added to the basic program

structure

6. Translate the structure diagram into structure text or program code.

The result of applying JSP is a program that reflects problem structure as expressed in a model of its inputs and outputs. If changes to the program are required that only affect local components, the changes can be easily made to corresponding program components. A program’s structural integrity – its correspondence with the problem’s structure – is the primary way that we can reduce errors and costs in software maintenance.

Program Design Patterns

Jackson introduces a number of rules or programming patterns that were derived from observation and experience in processing sequential data streams: single read-ahead rule, group- id rule, multiple readahead rule, backtracking, structure clashes and program decomposition, and program inversion. These patterns, which are similar to the design patterns encountered in object-oriented design (OOD), are encountered in elementary programming and reflected in the designs produced using Jackson Workbench.

Recognizing program design patterns while learning basic program design prepares students for later OOD design patterns encountered in designing information systems.
Jackson System Development Overview
Jackson System Development (JSD) is a method of system development that covers the software life cycle either directly or, by providing a framework into which more specialized techniques can fit. Jackson System Development can start from the stage in a project when there is only a general statement of requirements. However, many projects that have used Jackson System Development actually started slightly later in the life cycle, doing the first steps largely from existing documents rather than directly with the users. The later steps of JSD produce the code of the final system. Jackson’s first method, Jackson Structured Programming (JSP), is used to produce the final code. The output of the earlier steps of JSD are a set of program design problems, the design of which is the subject matter of JSP. Maintenance is also addressed by reworking whichever of the earlier steps are appropriate.

From the technical point of view there are three major stages in Jackson System Development, each divided into steps and sub-steps. From a manager's point of view there are a number of ways of organizing this technical work. In this overview we first describe the three major technical stages and then discuss JSD project planning, the variation between plans, and the reasons for choosing one rather than another.

JSD: The Modeling Stage
In the modeling stage the developers make a description of the aspects of the business or organization that the system will be concerned with. To make this a description they must analyze their business, choosing what is relevant and ignoring what is not. They have to consider the organization as it will be, not as it is now.

The model description is written very precisely. This precision forces the developer to ask detailed questions. It encourages good communication and understanding between developers, users, and everyone else involved with the new system.

The model description consists of actions, entities and related information. An action is an event, usually in the external reality, that is relevant to the system and whose occurrence the system must record. In implementation terms, actions might cause database updates. We start Jackson System Development by making a list of actions with definitions and associated attributes. Diagrams describe ordering relationships between actions. The diagrams describe the entities, people or, things that the system is concerned with.

The data that is to be stored for each entity is then defined. In effect we are choosing what is to be remembered by each entity about the actions that affect it. The full definition of this data includes an elaboration of the entity diagram to show in detail the update rules.

The result of the modeling stage is a set of tables, definitions and diagrams that describe: 

· in user terms exactly what happens in the organization and what has to be recorded about what happens, and 

· in implementation terms, the contents of the database, the integrity constraints and the update rules.

JSD: The Network Stage
In the network stage we build up a precise description of what the system has to do, including the outputs that are to be produced and the way the system is to appear to the user. This description is in terms of a network of programs. More precisely, it is a network of Communicating Sequential Processes (CSP), a concept developed by Tony Haoare. We start this network by making one program for each of the entities that was defined during the modeling stage. The network is then built up incrementally by adding new programs and connecting them up to the existing network. New programs are added for the following reasons:

· To collect inputs for actions, check them for errors, and pass them to the entity programs. In this way entity programs are kept up-to-date with what's happening outside; 

· To generate inputs for actions that do not correspond to external events. Such actions are substitutes for real world events, perhaps because those events cannot be detected; 

· To calculate and produce outputs.

There are two means of connecting programs in the network. These are by data streams (represented on our network diagram of circles) and by state vector inspection (represented on our network diagrams by diamonds). Whatever kind of connection is appropriate, the entity programs play a pivotal role in the construction of the network. Most of the new programs can be connected directly to the entity programs.

We draw a whole set of network diagrams to describe the system. Different networks usually only have entity programs in common. The complete system is represented by the overlay of all the diagrams. 

The diagrams are supported by textual information describing the contents of the data streams and state vector connections. The new programs that are added to the network are defined using the same diagrammatic notation used to describe the ordering of actions. These new programs are designed using the JSP (Jackson Structured Programming) method, which is now a subset of JSD.

JSD: The Implementation Stage
The result of the implementation stage is the final system. This stage is the only one directly concerned with the machine and the associated software on which the system is to run. Therefore, as well as producing and testing code, the implementation stage covers physical design issues. In particular it covers:

· physical data design, and 

· reconfiguring the network by combining programs.

Physical data design is about the design of files or databases. The details of database design depend on the particular DBMS being used. However, the necessary information about the application is all available from the network stage. The most important is the data defined for each entity and the high volume accessing of that data as defined by the frequently used state vector connections.

The result of the network stage is a highly distributed network of programs. Often, for convenience or efficiency, we convert programs into subroutines, in effect combining several programs into one, so that a fragment of the network is implemented as a single program. The network is reconfigured from a form appropriate for specification into a form appropriate for implementation.

JSD: Projects and Plans
We have presented the three stages of JSD as a simple linear progression. On a project, however, the stages overlap to a greater or lesser degree, and not just because people make mistakes that have to be corrected later. The stages and substages are nevertheless important because they classify and organize the technical work, they clarify the choices open to a project manager, and illuminate the risks when a decision has to be taken out of order.

The following are some examples of the overlap of the stages: 

· We can start adding programs to the network before the model is complete. 

· The detail designed of many of the simpler programs in the network can be done at the same time they are implemented. 

· The physical data designed can be started before the low frequency programs have been added to the network. 

· We may do a little each of model, network and implementation as the basis of a feasibility study. 

· On a large project the model-network-implementation of one release may overlap with that of the next.

None of these overlappings is compulsory. A set of circumstances exists that makes each sensible. A project plan is made based on the technical framework of JSD and on the political and organizational circumstances of the project

What is Jackson System Development (JSD)?
Michael Jackson (not the singer) created Jackson System Development (JSD) using the principles laid out in Jackson Structured Programming (JSP). JSD is a structured analysis and design method similar to SSADM. It uses Entity Structure Diagrams (ESD) and Network Diagrams (ND) to model a system.

Entity Structure Diagrams (ESD)
Entity Structure Diagrams (ESDs) illustrate the time-ordered actions entities perform within the system.

[image: image4.png]Entity

Action Action Action
o B ”
Action Action Action
G B G
Action Action Action





An Entity Structure Diagram (ESD) 

Entity Structure Diagram (ESD) Notations
[image: image5.png]Entity





Entity
An entity is an object that acts and is acted on by the system. The root of the ESD parent-child tree is a single entity (the only one on the diagram).
Learn how to edit text on entities.
[image: image6.png]Action





Action
Actions are carried out by entities and actions affect other entities. They are linked to the root entity and each other in a parent-child hierarchy.
Learn how to edit text on entities.
[image: image7.png]Entiy

Action

Action

Action





Constructs - Sequence
JSD constructs are identical to SSADM Entity Life History constructs. Use a sequence construct to illustrate actions that are executed in order from left to right.

[image: image8.png]Action Action





Constructs - Selection
To represent a choice between two or more mutually exclusive actions, mark the actions with a small "o" (for option) on the upper right hand corner.

[image: image9.png]Entity





Constructs - Iteration
If an action is repeated, place a small asterisk (*) in its upper right hand corner. There is usually only one action under an iteration construct.

[image: image10.png]



Null Component
In an If-Else statement, a null component can illustrate a "do nothing" alternative.

Network Diagram (ND)
Network Diagrams (NDs) show interaction between processes. They are sometimes referred to as System Specification Diagrams (SSDs).

[image: image11.png]



A JSD Network Diagram 

Network Diagram (ND)
[image: image12.png]Process





Process
Processes represent system functions. A model process represents primary system functions. It is usually connected to an outside entity via a datastream.
Learn how to edit text on a process.
[image: image13.png]Process

Process





DataStream
Datastreams connect processes and specify what information is passed between them.

[image: image14.png]»»»»»»

yyyyyyy





State Vector
State vectors are an alternative way of connecting processes. They specify the characteristic or state of the entity being changed by a process.

